29 research outputs found

    Container-based load balancing for energy efficiency in software-defined edge computing environment

    Get PDF
    The workload generated by the Internet of Things (IoT)-based infrastructure is often handled by the cloud data centers (DCs). However, in recent time, an exponential increase in the deployment of the IoT-based infrastructure has escalated the workload on the DCs. So, these DCs are not fully capable to meet the strict demand of IoT devices in regard to the lower latency as well as high data rate while provisioning IoT workloads. Therefore, to reinforce the latency-sensitive workloads, an intersection layer known as edge computing has successfully balanced the entire service provisioning landscape. In this IoT-edge-cloud ecosystem, large number of interactions and data transmissions among different layer can increase the load on underlying network infrastructure. So, software-defined edge computing has emerged as a viable solution to resolve these latency-sensitive workload issues. Additionally, energy consumption has been witnessed as a major challenge in resource-constrained edge systems. The existing solutions are not fully compatible in Software-defined Edge ecosystem for handling IoT workloads with an optimal trade-off between energy-efficiency and latency. Hence, this article proposes a lightweight and energy-efficient container-as-a-service (CaaS) approach based on the software-define edge computing to provision the workloads generated from the latency-sensitive IoT applications. A Stackelberg game is formulated for a two-period resource allocation between end-user/IoT devices and Edge devices considering the service level agreement. Furthermore, an energy-efficient ensemble for container allocation, consolidation and migration is also designed for load balancing in software-defined edge computing environment. The proposed approach is validated through a simulated environment with respect to CPU serve time, network serve time, overall delay, lastly energy consumption. The results obtained show the superiority of the proposed in comparison to the existing variants

    Derived blockchain architecture for security-conscious data dissemination in edge-envisioned Internet of Drones ecosystem

    Get PDF
    Internet of Drones (IoD) facilitates the autonomous operations of drones into every application (warfare, surveillance, photography, etc) across the world. The transmission of data (to and fro) related to these applications occur between the drones and the other infrastructure over wireless channels that must abide to the stringent latency restrictions. However, relaying this data to the core cloud infrastructure may lead to a higher round trip delay. Thus, we utilize the cloud close to the ground, i.e., edge computing to realize an edge-envisioned IoD ecosystem. However, as this data is relayed over an open communication channel, it is often prone to different types of attacks due to it wider attack surface. Thus, we need to find a robust solution that can maintain the confidentiality, integrity, and authenticity of the data while providing desired services. Blockchain technology is capable to handle these challenges owing to the distributed ledger that store the data immutably. However, the conventional block architecture pose several challenges because of limited computational capabilities of drones. As the size of blockchain increases, the data flow also increases and so does the associated challenges. Hence, to overcome these challenges, in this work, we have proposed a derived blockchain architecture that decouples the data part (or block ledger) from the block header and shifts it to off-chain storage. In our approach, the registration of a new drone is performed to enable legitimate access control thus ensuring identity management and traceability. Further, the interactions happen in the form of transactions of the blockchain. We propose a lightweight consensus mechanism based on the stochastic selection followed by a transaction signing process to ensure that each drone is in control of its block. The proposed scheme also handles the expanding storage requirements with the help of data compression using a shrinking block mechanism. Lastly, the problem of additional delay anticipated due to drone mobility is handled using a multi-level caching mechanism. The proposed work has been validated in a simulated Gazebo environment and the results are promising in terms of different metrics. We have also provided numerical validations in context of complexity, communication overheads and computation costs

    A Deep Learning-Based Blockchain Mechanism for Secure Internet of Drones Environment

    No full text
    Drones are equipped with high-vision cameras, advanced sensors, and GPS receivers to deliver diverse services from high altitude thereby creating an airborne network. In this environment, physical things (drones, sensors, etc.,) are controlled using computational algorithms to form a cyber-physical system for the Internet of drones. Although the drones provide manifold benefits still there are many issues (security, privacy, and data integrity) which must be resolved before the usage of drones in smart cyber-physical systems. So, in this paper, a blockchain-based security mechanism for cyber-physical systems is proposed to ensure secure transfer of information among drones. In this mechanism, the miner node is selected using a deep learning-based approach, i.e., a deep Boltzmann machine, using features like computational resources, the available battery power, and flight time of the drone. The proposed mechanism is evaluated based on different performance metrics and the results obtained show the potential benefits of the proposed scheme
    corecore